pH-Switching of the luminescent, redox, and magnetic properties in a spin crossover cobalt(ii) molecular nanomagnet

CHEMICAL SCIENCE(2023)

引用 1|浏览4
暂无评分
摘要
The ability of mononuclear first-row transition metal complexes as dynamic molecular systems to perform selective functions under the control of an external stimulus that appropriately tunes their properties may greatly impact several domains of molecular nanoscience and nanotechnology. This study focuses on two mononuclear octahedral cobalt( II) complexes of formula {[Co-II(HL)(2)][Co-II(HL) L]}(ClO4)(3)$9H(2)O (1) and [(CoL2)-L-II]$5H(2)O (2) [ HL = 4'-(4-carboxyphenyl)-2,2':6',2''-terpyridine], isolated as a mixed protonated/hemiprotonated cationic salt or a deprotonated neutral species. This pair of pH isomers constitutes a remarkable example of a dynamic molecular system exhibiting reversible changes in luminescence, redox, and magnetic (spin crossover and spin dynamics) properties as a result of ligand deprotonation, either in solution or solid state. In this last case, the thermal-assisted spin transition coexists with the field-induced magnetisation blockage of "faster" or "slower" relaxing low-spin Co-II ions in 1 or 2, respectively. In addition, pH- reversible control of the acid-base equilibrium among dicationic protonated, cationic hemiprotonated, and neutral deprotonated forms in solution enhances luminescence in the UV region. Besides, the reversibility of the one- electron oxidation of the paramagnetic low-spin CoII into the diamagnetic low-spin Co-III ion is partially lost and completely restored by pH decreasing and increasing. The fine- tuning of the optical, redox, and magnetic properties in this novel class of pH-responsive, spin crossover molecular nanomagnets offers fascinating possibilities for advanced multifunctional and multiresponsive magnetic devices for molecular spintronics and quantum computing such as pHeffect spin quantum transformers.
更多
查看译文
关键词
spin crossover,luminescent,magnetic properties,cobalt<scp>ii</scp>,ph-switching
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要