Chrome Extension
WeChat Mini Program
Use on ChatGLM

Metabolism of resistant starch RS3 administered in combination with Lactiplantibacillus plantarum strain 84-3 by human gut microbiota in simulated fermentation experiments in vitro and in a rat model

FOOD CHEMISTRY(2023)

Cited 9|Views23
No score
Abstract
This study aimed to investigate the metabolic and population responses of gut microbiota to resistant starch (RS3) in the presence of exogenous Lactiplantibacillus plantarum strain 84-3 (Lp84-3) in vitro and in vivo. Lp84-3 promoted acetate, propionate, and butyrate production from RS3 by gut microbiota and increased Lactobacillus and Blautia contents in vitro. Furthermore, in the presence of Lp84-3, starch granules presented a "dot-by-hole " fermentation pattern. Administration of Lp84-3 with RS3 increased the level of SCFA-producing Faecalibaculum, Parabacteroides, Alistipes, and Anaeroplasma in the faeces of rates, with Lactobacillus and Akkermansia representing the key genera that significantly promoted SCFAs, especially propionate and butyrate. Lp84-3 with RS3 promoted genes related to tryptophan synthase (EC 4.2.1.20) and beta-glucosidase (EC 3.2.1.21) in faecal bacteria. Our findings highlight the ability of Lp84-3 to enhance RS3 degradation, possibly by promoting SCFAproducing bacteria, and indicate that Lp84-3 could be a potential probiotic with a beneficial effect on gut microbiota.
More
Translated text
Key words
Lactiplantibacillus plantarum,Resistant starch,Simulated fermentation,Short-chain fatty acid,Gut microbiota
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined