Biorealistic Neuronal Temperature-Sensitive Dynamics within Threshold Switching Memristors: Toward Neuromorphic Thermosensation.

ACS applied materials & interfaces(2024)

引用 0|浏览9
暂无评分
摘要
Neuromorphic nanoelectronic devices that can emulate the temperature-sensitive dynamics of biological neurons are of great interest for bioinspired robotics and advanced applications such as in silico neuroscience. In this work, we demonstrate the biomimetic thermosensitive properties of two-terminal V3O5 memristive devices and showcase their similarity to the firing characteristics of thermosensitive biological neurons. The temperature-dependent electrical characteristics of V3O5-based memristors are used to understand the spiking response of a simple relaxation oscillator. The temperature-dependent dynamics of these oscillators are then compared with those of biological neurons through numerical simulations of a conductance-based neuron model, the Morris-Lecar neuron model. Finally, we demonstrate a robust neuromorphic thermosensation system inspired by biological thermoreceptors for bioinspired thermal perception and representation. These results not only demonstrate the biorealistic emulative potential of threshold-switching memristors but also establish V3O5 as a functional material for realizing solid-state neurons for neuromorphic computing and sensing applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要