Photonics of Hydrothermally Treated -Lactoglobulin Amyloids

SMALL SCIENCE(2024)

引用 0|浏览6
暂无评分
摘要
Increased temperature and high pressure are applied to beta-lactoglobulin fibrils in the autoclave, resulting in the acquisition of a composite material comprised of partially disassembled amyloid fibrils and carbon dots. Confirmation of the preservation of the beta-sheet motif attributed to amyloids in the hydrothermally treated fibrils is obtained through wide-angle X-ray scattering and ThT assay. Z-scan analysis reveals a two-photon absorption (2PA) enhancement in the low-lying transition band (La) of tyrosine, while quantum chemical calculations demonstrate a correlation between the yield of 2PA and the interspace distance between aromatic residues. Overall, the intrinsic optical properties of amyloid fibrils treated in a subcritical water environment are found to be linked with the pi-conjugation of tyrosine units and their through-space coupling. The resulting composite material is employed as a coating for a commercial ultraviolet light-emitting diode lamp, showcasing the potential utility of sustainable biomaterials with improved optical properties for photonics applications. By subjecting beta-lactoglobulin fibrils to elevated temperature and pressure in autoclave, partially disassembled fibrils are generated. The study reveals a correlation between fluorescence and two-photon absorption and the spacing of aromatic residues, shedding light on the mechanism behind the improved optical properties of amyloid fibrils. Furthermore, the hydrothermally treated beta-lactoglobulin fibrils are utilized to coat ultraviolet light-emitting diode lamps. image (c) 2024 WILEY-VCH GmbH
更多
查看译文
关键词
amyloids,enhanced emission,hydrothermal treatment,Light emitting diode (LED),nonlinear absorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要