Ignition of Carbon Black during Nanosecond Diffuse and Spark Discharges in Air at Atmospheric Pressure

SURFACES(2024)

引用 0|浏览5
暂无评分
摘要
Many scientific teams are currently studying the effects of plasma generated by nanosecond diffuse discharges on the surfaces of various materials in order to modify their properties. To achieve this, uniform plasma is required to act on the target being treated, which is often an electrode in a discharge system. Previously, the surface treatment uniformity of flat electrodes during a nanosecond discharge in a point-to-plane gap was studied by applying a carbon black layer, and a discharge mode was identified in which there was no erosion on the treated electrode. In this study, it was established that during a nanosecond discharge in air at atmospheric pressure in a non-uniform electric field, carbon black deposited on the surface of a flat anode can ignite. The conditions and dynamics of carbon black ignition during the nanosecond discharge were determined. It was observed that the carbon black is ignited on the surface and continues to combust in the gap in the form of flame plumes for tens of milliseconds. It was also found that the combustion of carbon black can occur in both diffuse and spark discharges.
更多
查看译文
关键词
nanosecond discharge,non-equilibrium,low-temperature plasma,surface treatment,non-uniform electric field,carbon black,soot,carbon ignition,carbon combustion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要