Combining Metabolic Engineering and Lipid Droplet Assembly to Achieve Campesterol Overproduction in Saccharomyces cerevisiae

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY(2024)

引用 0|浏览1
暂无评分
摘要
Campesterol is a kind of important functional food additive. Therefore, stable and efficient campesterol biosynthesis is significant. Herein, we first knocked out the sterol 22-desaturase gene in Saccharomyces cerevisiae and expressed sterol Delta 7-reductase from Pangasianodon hypophthalmus, obtaining a strain that produced 6.6 mg/L campesterol. Then, the modular expression of campesterol synthesis enzymes was performed, and a campesterol titer of 88.3 mg/L was achieved. Because campesterol is a lipid-soluble macromolecule, we promoted lipid droplet formation by exploring regulatory factors, and campesterol production was improved to 169.20 mg/L. Next, triacylglycerol lipase was used to achieve compartment campesterol synthesis. After enhancing the expression of sterol Delta 7-reductase and screening cations, the campesterol titer reached 438.28 mg/L in a shake flask and 1.44 g/L in a 5 L bioreactor, which represents the highest campesterol titer reported to date. Metabolic regulation combined with lipid droplet engineering may be useful for the synthesis of other steroids as well.
更多
查看译文
关键词
campesterol,lipid droplet,metabolic engineering,Saccharomyces cerevisiae
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要