Integrated transcriptomic landscape of the effect of anti-steatotic treatments in high-fat diet mouse models of non-alcoholic fatty liver disease.

The Journal of pathology(2024)

Cited 0|Views9
No score
Abstract
High-fat diet (HFD) mouse models are widely used in research to develop medications to treat non-alcoholic fatty liver disease (NAFLD), as they mimic the steatosis, inflammation, and hepatic fibrosis typically found in this complex human disease. The aims of this study were to identify a complete transcriptomic signature of these mouse models and to characterize the transcriptional impact exerted by different experimental anti-steatotic treatments. For this reason, we conducted a systematic review and meta-analysis of liver transcriptomic studies performed in HFD-fed C57BL/6J mice, comparing them with control mice and HFD-fed mice receiving potential anti-steatotic treatments. Analyzing 21 studies broaching 24 different treatments, we obtained a robust HFD transcriptomic signature that included 2,670 differentially expressed genes and 2,567 modified gene ontology biological processes. Treated HFD mice generally showed a reversion of this HFD signature, although the extent varied depending on the treatment. The biological processes most frequently reversed were those related to lipid metabolism, response to stress, and immune system, whereas processes related to nitrogen compound metabolism were generally not reversed. When comparing this HFD signature with a signature of human NAFLD progression, we identified 62 genes that were common to both; 10 belonged to the group that were reversed by treatments. Altered expression of most of these 10 genes was confirmed in vitro in hepatocytes and hepatic stellate cells exposed to a lipotoxic or a profibrogenic stimulus, respectively. In conclusion, this study provides a vast amount of information about transcriptomic changes induced during the progression and regression of NAFLD and identifies some relevant targets. Our results may help in the assessment of treatment efficacy, the discovery of unmet therapeutic targets, and the search for novel biomarkers. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
More
Translated text
Key words
transcriptomic signature,MAFLD,therapeutic targets,meta-analysis,treatment efficacy
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined