Neuromorphic Incremental on-chip Learning with Hebbian Weight Consolidation

Zifan Ning,Chaojin Chen,Xiang Cheng, Wangzi Yao,Tielin Zhang,Bo Xu

CoRR(2023)

引用 0|浏览9
暂无评分
摘要
As next-generation implantable brain-machine interfaces become pervasive on edge device, incrementally learning new tasks in bio-plasticity ways is urgently demanded for Neuromorphic chips. Due to the inherent characteristics of its structure, spiking neural networks are naturally well-suited for BMI-chips. Here we propose Hebbian Weight Consolidation, as well as an on-chip learning framework. HWC selectively masks synapse modifications for previous tasks, retaining them to store new knowledge from subsequent tasks while preserving the old knowledge. Leveraging the bio-plasticity of dendritic spines, the intrinsic self-organizing nature of Hebbian Weight Consolidation aligns naturally with the incremental learning paradigm, facilitating robust learning outcomes. By reading out spikes layer by layer and performing back-propagation on the external micro-controller unit, MLoC can efficiently accomplish on-chip learning. Experiments show that our HWC algorithm up to 23.19% outperforms lower bound that without incremental learning algorithm, particularly in more challenging monkey behavior decoding scenarios. Taking into account on-chip computing on Synsense Speck 2e chip, our proposed algorithm exhibits an improvement of 11.06%. This study demonstrates the feasibility of employing incremental learning for high-performance neural signal decoding in next-generation brain-machine interfaces.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要