Ginseng-derived nanoparticles reprogram macrophages to regulate arginase-1 release for ameliorating T cell exhaustion in tumor microenvironment

Journal of experimental & clinical cancer research : CR(2023)

引用 1|浏览10
暂无评分
摘要
Background Lines of evidence indicated that, immune checkpoints (ICs) inhibitors enhanced T cell immune response to exert anti-tumor effects. However, T cell exhaustion has been so far a major obstacle to antitumor immunotherapy in colorectal cancer patients. Our previous studies showed that ginseng-derived nanoparticles (GDNPs) inhibited the growth of various tumors by reprograming tumor-associated macrophages (TAMs) and downregulated the ICs expression on T cells in tumor microenvironment (TME), but the underlying effector mechanisms remained unclear. Methods The correlation between arginase-1 (ARG1) and T cells was computed based on the colorectal cancer patients in TCGA database. In vitro, we observed that GDNPs reprogrammed TAMs inhibited ARG1 release and ultimately ameliorated T cell exhaustion according to several techniques including WB, PCR, ELISA and flow cytometry. We also used an in vivo MC38 tumor-bearing model and administered GDNPs to assess their anti-tumor effects through multiple indices. The mechanism that GDNPs improved T cell exhaustion was further clarified using the bioinformatics tools and flow cytometry. Results GDNPs reprogramed TAMs via reducing ARG1 production. Moreover, normalized arginine metabolism ameliorated T cell exhaustion through mTOR-T-bet axis, resulting in reduced ICs expression and enhanced CD8 + T cells expansion. Conclusions By regulating the mTOR-T-bet axis, GDNPs reprogramed macrophages to regulate ARG1 release, which further ameliorated T cell exhaustion in TME. These findings provided new insights into comprehending the mechanisms underlying the mitigation of T cell exhaustion, which may facilitate the development of innovative therapeutic strategies in the field of cancer treatment.
更多
查看译文
关键词
Ginseng-derived nanoparticles,Arginase-1,Tumor-associated macrophages,T cell exhaustion,mTOR
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要