Drug–Drug Interaction Studies of Esmethadone (REL-1017) Involving CYP3A4- and CYP2D6-Mediated Metabolism

Drugs in R&D(2023)

引用 0|浏览8
暂无评分
摘要
Esmethadone (dextromethadone; d-methadone; S-methadone (+)-methadone; REL-1017) is the opioid inactive dextro-isomer of racemic methadone. Esmethadone is a low potency N-methyl-D-aspartate (NMDA) receptor channel blocker with higher affinity for GluN2D subtypes. Esmethadone showed robust, rapid, and sustained antidepressant effects in patients with major depressive disorder (MDD) with inadequate response to ongoing serotonergic antidepressant treatment. Here we described the results of in vitro and phase 1 clinical trials aimed at investigating the esmethadone metabolism and possible drug-drug interactions. Esmethadone is primarily metabolized to EDDP (2-ethylene-1,5-dimethyl-3,3-diphenylpyrrolidine) by multiple enzymes, including CYP3A4/5 and CYP2B6. In vitro studies showed that esmethadone inhibits CYP2D6 with IC50 of 9.6 μM and is an inducer of CYP3A4/5. The clinical relevance of the inhibition of CYP2D6 and the induction of CYP3A4 were investigated by co-administering esmethadone and dextromethorphan (a substrate for CYP2D6) or midazolam (a substrate for CYP3A4) in healthy volunteers. The administration of esmethadone at the dosage of 75 mg (which is the loading dose administered to patients in MDD clinical trials) significantly increased the exposure (AUC) of both dextromethorphan and its metabolite dextrorphan by 2.71 and 3.11-fold, respectively. Esmethadone did not modify the pharmacokinetic profile of midazolam, while it increased Cmax and AUC of its metabolite 1′-hydroxymidazolam by 2.4- and 3.8-fold, respectively. A second study evaluated the effect of the CYP3A4 inhibitor cobicistat on the pharmacokinetics of esmethadone. Cobicistat slightly increase (+32
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要