Functional contributions of HCN channels in the primary auditory neurons of the mouse inner ear.

JOURNAL OF GENERAL PHYSIOLOGY(2013)

引用 37|浏览8
暂无评分
摘要
The hyperpolarization-activated current, I-h, is carried by members of the Hcn channel family and contributes to resting potential and firing properties in excitable cells of various systems, including the auditory system. I-h has been identified in spiral ganglion neurons (SGNs); however, its molecular correlates and their functional contributions have not been well characterized. To investigate the molecular composition of the channels that carry I-h in SGNs, we examined Hcn mRNA harvested from spiral ganglia of neonatal and adult mice using quantitative RT-PCR. The data indicate expression of Hcn1, Hcn2, and Hcn4 subunits in SGNs, with Hcn1 being the most highly expressed at both stages. To investigate the functional contributions of HCN subunits, we used the whole-cell, tight-seal technique to record from wild-type SGNs and those deficient in Hcn1, Hcn2, or both. We found that HCN1 is the most prominent subunit contributing to I-h in SGNs. Deletion of Hcn1 resulted in reduced conductance (G(h)), slower activation kinetics (tau(fast)), and hyperpolarized half-activation (V-1/2) potentials. We demonstrate that I-h contributes to SGN function with depolarized resting potentials, depolarized sag and rebound potentials, accelerated rebound spikes after hyperpolarization, and minimized jitter in spike latency for small depolarizing stimuli. Auditory brainstem responses of Hcn1-deficient mice showed longer latencies, suggesting that HCN1-mediated I-h is critical for synchronized spike timing in SGNs. Together, our data indicate that I-h contributes to SGN membrane properties and plays a role in temporal aspects of signal transmission between the cochlea and the brain, which are critical for normal auditory function.
更多
查看译文
关键词
reaction time,mutation,action potentials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要