Lytic Bacteriophage Is a Promising Adjunct to Common Antibiotics across Cystic Fibrosis Clinical Strains and Culture Models of Pseudomonas aeruginosa Infection.

Antibiotics (Basel, Switzerland)(2023)

引用 0|浏览12
暂无评分
摘要
Bacteriophages (phages) are antimicrobials with resurgent interest that are being investigated for the treatment of antibiotic refractory infection, including for (Pa) lung infection in cystic fibrosis (CF). In vitro work supports the use of this therapy in planktonic and biofilm culture models; however, consistent data are lacking for efficacy across different clinical Pa strains, culture models, and in combination with antibiotics in clinical use. We first examined the efficacy of a 4-phage cocktail as an adjunct to our CF centre's first-line systemic combination antibiotic therapy (ceftazidime + tobramycin) for 16 different clinical Pa strains and then determined subinhibitory interactions for a subset of these strains with each antibiotic in planktonic and biofilm culture. When a 4-phage cocktail (4 × 10 PFU/mL) was added to a ceftazidime-tobramycin combination (ceftazidime 16 mg/mL + tobramycin 8 mg/mL), we observed a 1.7-fold and 1.3-fold reduction in biofilm biomass and cell viability, respectively. The four most antibiotic resistant strains in biofilm were very susceptible to phage treatment. When subinhibitory concentrations of antibiotics and phages were investigated, we observed additivity/synergy as well as antagonism/inhibition of effect that varied across the clinical strains and culture model. In general, more additivity was seen with the phage-ceftazidime combination than with phage-tobramycin, particularly in biofilm culture, where no instances of additivity were seen when phages were combined with tobramycin. The fact that different bacterial strains were susceptible to phage treatment when compared to standard antibiotics is promising and these results may be relevant to ongoing clinical trials exploring the use of phages, in particular in the selection of subjects for clinical trials.
更多
查看译文
关键词
Pseudomonas aeruginosa,adjunctive therapy,antimicrobial resistance,bacteriophage,cystic fibrosis,novel antimicrobials,pulmonary infection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要