High-performance silicon−graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm

Light: Science & Applications(2020)

引用 191|浏览0
暂无评分
摘要
Graphene has attracted much attention for the realization of high-speed photodetection for silicon photonics over a wide wavelength range. However, the reported fast graphene photodetectors mainly operate in the 1.55 μm wavelength band. In this work, we propose and realize high-performance waveguide photodetectors based on bolometric/photoconductive effects by introducing an ultrathin wide silicon−graphene hybrid plasmonic waveguide, which enables efficient light absorption in graphene at 1.55 μm and beyond. When operating at 2 μm, the present photodetector has a responsivity of ~70 mA/W and a setup-limited 3 dB bandwidth of >20 GHz. When operating at 1.55 μm, the present photodetector also works very well with a broad 3 dB bandwidth of >40 GHz (setup-limited) and a high responsivity of ~0.4 A/W even with a low bias voltage of −0.3 V. This work paves the way for achieving high-responsivity and high-speed silicon–graphene waveguide photodetection in the near/mid-infrared ranges, which has applications in optical communications, nonlinear photonics, and on-chip sensing. The use of a silicon−graphene plasmonic waveguide has enabled the realization of fast and sensitive photodetectors that operate at the wavelength of 2 µm. In order to satisfy the demands for the applications in optical communication and optical sensing, there is the need to extend silicon photonics to wavelengths beyond 1.55 µm. However, it is a challenge to create high-performance photodetectors at these wavelengths. Now, Daoxin Dai and coworkers from Zhejiang University and Southeast University in China have proposed and realized a silicon−graphene hybrid plasmonic waveguide photodetector that operates at 2 µm with a responsivity of ~70 mA/W and a 3-dB bandwidth over 20 GHz. In this design, efficient light absorption in graphene is enabled by using a hybrid plasmonic waveguide with a wide thin silicon ridge core and a metal cap that serves as a signal electrode.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要