Bulk Heterojunction Organic Semiconductor Photoanodes: Tuning Energy Levels to Optimize Electron Injection

ACS APPLIED MATERIALS & INTERFACES(2022)

引用 5|浏览6
暂无评分
摘要
The use of a bulk heterojunction of organic semiconductors to drive photoelectrochemical water splitting is an emerging trend; however, the optimum energy levels of the donor and acceptor have not been established for photoanode operation with respect to electrolyte pH. Herein, we prepare a set of donor polymers and non-fullerene acceptors with varying energy levels to probe the effect of photogenerated electron injection into a SnO2-based substrate under sacrificial photo-oxidation conditions. Photocurrent density (for sacrificial oxidation) up to 4.1 mA cm(-2) was observed at 1.23 V vs reversible hydrogen electrode in optimized photoanodes. Moreover, we establish that a lowerlying donor polymer leads to improved performance due to both improved exciton separation and better charge collection. Similarly, lower-lying acceptors also give photoanodes with higher photocurrent density but with a later photocurrent onset potential and a narrower range of pH for good operation due to the Nernstian behavior of the SnO2, which leads to a smaller driving force for electron injection at high pH.
更多
查看译文
关键词
photoelectrochemistry,thiophenedicarboximide,benzodithiophene,polymer,rylene diimide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要