A Brain-Inspired Approach for Probabilistic Estimation and Efficient Planning in Precision Physical Interaction

IEEE transactions on cybernetics(2023)

引用 1|浏览45
暂无评分
摘要
This article presents a novel structure of spiking neural networks (SNNs) to simulate the joint function of multiple brain regions in handling precision physical interactions. This task desires efficient movement planning while considering contact prediction and fast radial compensation. Contact prediction demands the cognitive memory of the interaction model, and we novelly propose a double recurrent network to imitate the hippocampus, addressing the spatiotemporal property of the distribution. Radial contact response needs rich spatial information, and we use a cerebellum-inspired module to achieve temporally dynamic prediction. We also use a block-based feedforward network to plan movements, behaving like the prefrontal cortex. These modules are integrated to realize the joint cognitive function of multiple brain regions in prediction, controlling, and planning. We present an appropriate controller and planner to generate teaching signals and provide a feasible network initialization for reinforcement learning, which modifies synapses in accordance with reality. The experimental results demonstrate the validity of the proposed method.
更多
查看译文
关键词
Task analysis,Robots,Force,Planning,Mathematical models,Brain modeling,Biology,Brain-inspired structure,precision physical interaction,spiking neural networks (SNNs)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要