Molecular quantum interference effects on thermopower in hybrid 2-dimensional monolayers

NANOSCALE(2022)

引用 4|浏览3
暂无评分
摘要
Quantum interference effects in single-molecule devices can significantly enhance the thermoelectric properties of these devices. However, single-molecule systems have limited utility for power conversion. In this work, we study the effects of destructive quantum interference in molecular junctions on the thermoelectric properties of hybrid, 2-dimensional molecule-nanoparticle monolayers. We study two isomers of benzenedithiol molecules, with either a para or meta configuration for the thiol groups, as molecular interlinkers between gold nanoparticles in the structure. The asymmetrical structure in the meta configuration significantly improves the Seebeck coefficient and power factor over the para configuration. These results suggest that thermoelectric performance of engineered, nanostructured material can be enhanced by harnessing quantum interference effects in the substituent components.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要