Energy-Sensitive Trajectory Design and Restoration Areas Allocation for UAV-Enabled Grassland Restoration

arXiv (Cornell University)(2022)

引用 0|浏览1
暂无评分
摘要
Grassland restoration is a critical means to safeguard grassland ecological degradation. To alleviate the extensive human labors and boost the restoration efficiency, UAV is promising for its fully automatic capability yet still waits to be exploited. This paper progresses this emerging technology by explicitly considering the realistic constraints of the UAV and the grassland degradation while planning the grassland restoration. To this end, the UAV-enabled restoration process is first mathematically modeled as the maximization of restoration areas of the UAV under the limited battery energy of UAV, the grass seeds weight, the number of restored areas, and the corresponding sizes. Then we analyze that, by considering these constraints, this original problem emerges two conflict objectives, namely the shortest flight path and the optimal areas allocation. As a result, the maximization of restoration areas turns out to be a composite of a trajectory design problem and an areas allocation problem that are highly coupled. From the perspective of optimization, this requires solving two NP-hard problems of both the traveling salesman problem (TSP) and the multidimensional knapsack problem (MKP) at the same time. To tackle this complex problem, we propose a cooperative optimization algorithm, called CHAPBILM, to solve those two problems interlacedly by utilizing the interdependencies between them. Multiple simulations verify the conflicts between the trajectory design and areas allocation. The effectiveness of the cooperative optimization algorithm is also supported by the comparisons with traditional optimization methods which do not utilize the interdependencies between the two problems. As a result, the proposed algorithm successfully solves the multiple simulation instances in a near-optimal way.
更多
查看译文
关键词
restoration areas allocation,energy-sensitive,uav-enabled
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要