Chrome Extension
WeChat Mini Program
Use on ChatGLM

Abstract 5712: Nutrient scarcity confers breast cancer brain metastasis sensitivity to serine synthesis pathway inhibition

Clinical Research (Excluding Clinical Trials)(2020)

Cited 1|Views16
No score
Abstract
Abstract The metabolic milieu of the brain is severely deprived of nutrients, including the amino acids serine and its catabolite glycine. The metabolic rewiring required for tumor cells to survive in the nutrient-limited environment of the brain and the metabolic vulnerabilities this confers are poorly understood. Here we demonstrate that cell-intrinsic de novo serine synthesis is a major determinant of triple-negative breast cancer (TNBC) brain metastasis. Whole proteome comparison of TNBC cells that differ in their capacity to colonize the brain reveals that 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of glucose-derived serine synthesis, is the most significantly upregulated protein in cells that efficiently metastasize to the brain. Expression of catalytically active PHGDH in a non-brain trophic cell line promoted brain metastasis. Furthermore, genetic silencing or pharmacological inhibition of PHGDH attenuated brain metastasis burden in mice. These findings indicate that nutrient availability determines serine synthesis pathway dependence in brain metastasis, and suggest that PHGDH inhibitors may be useful in the treatment of patients with cancers that have spread to the brain. Citation Format: Bryan Ngo, Eugenie Kim, Sophia Doll, Sophia Bustraan, Alba Luengo, Shawn M. Davidson, Ahmed Ali, Gino Ferraro, Diane Kang, Jing Ni, Roger Liang, Ariana Plasger, Edward R. Kastenhuber, Roozbeh Eskandari, Sarah Bacha, Roshan Sriram, Benjamin D. Stein, Samuel F. Bakhoum, Edouard Mullarky, Matija Snuderl, Nello Mainolfi, Vipin Suri, Adam Friedman, Mark Manfredi, David M. Sabatini, Drew Jones, Min Yu, Jean J. Zhao, Rakesh K. Jain, Matthew G. Vander Heiden, Matthias Mann, Lewis C. Cantley, Michael E. Pacold. Nutrient scarcity confers breast cancer brain metastasis sensitivity to serine synthesis pathway inhibition [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 5712.
More
Translated text
Key words
metastasis,nutrient scarcity,serine,synthesis pathway inhibition
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined