Particles Emission from an Industrial Spray Coating Process Using Nano-Materials

NANOMATERIALS(2022)

引用 4|浏览20
暂无评分
摘要
Industrial spray coating processes are known to produce excellent coatings on large surfaces and are thus often used for in-line production. However, they could be one of the most critical sources of worker exposure to ultrafine particles (UFPs). A monitoring campaign at the Witek s.r.l. (Florence, Italy) was deployed to characterize the release of TiO2 NPs doped with nitrogen (TiO2-N) and Ag capped with hydroxyethyl cellulose (AgHEC) during automatic industrial spray-coating of polymethyl methacrylate (PMMA) and polyester. Aerosol particles were characterized inside the spray chamber at near field (NF) and far field (FF) locations using on-line and off-line instruments. Results showed that TiO2-N suspension produced higher particle number concentrations than AgHEC in the size range 0.3-1 mu m (on average 1.9 10(2) p/cm(3) and 2.5 10(1) p/cm(3), respectively) after background removing. At FF, especially at worst case scenario (4 nozzles, 800 mL/min flow rate) for TiO2-N, the spray spikes were correlated with NF, with an observed time lag of 1 minute corresponding to a diffusion speed of 0.1 m/s. The averaged ratio between particles mass concentrations in the NF position and inside the spray chamber was 1.7% and 1.5% for TiO2-N and for AgHEC suspensions, respectively. The released particles' number concentration of TiO2-N in the size particles range 0.3-1 mu m was comparable for both PMMA and polyester substrates, about 1.5 and 1.6 10(2) p/cm(3). In the size range 0.01-30 mu m, the aerosol number concentration at NF for both suspensions was lower than the nano reference values (NRVs) of 16 center dot 10(3) p/cm(-3).
更多
查看译文
关键词
aerosol, spray coating, nanoparticles, worker exposure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要