Chronic Morphine Induces IL-18 in Ileum Myenteric Plexus Neurons Through Mu-opioid Receptor Activation in Cholinergic and VIPergic Neurons

Journal of Neuroimmune Pharmacology(2022)

引用 1|浏览16
暂无评分
摘要
The gastrointestinal epithelium is critical for maintaining a symbiotic relationship with commensal microbiota. Chronic morphine exposure can compromise the gut epithelial barrier in mice and lead to dysbiosis. Recently, studies have implicated morphine-induced dysbiosis in the mechanism of antinociceptive tolerance and reward, suggesting the presence of a gut-brain axis in the pharmacological effects of morphine. However, the mechanism(s) underlying morphine-induced changes in the gut microbiome remains unclear. The pro-inflammatory cytokine, Interleukin-18 (IL-18), released by enteric neurons can modulate gut barrier function. Therefore, in the present study we investigated the effect of morphine on IL-18 expression in the mouse ileum. We observed that chronic morphine exposure in vivo induces IL-18 expression in the ileum myenteric plexus that is attenuated by naloxone. Given that mu-opioid receptors (MORs) are mainly expressed in enteric neurons, we also characterized morphine effects on the excitability of cholinergic (excitatory) and vasoactive intestinal peptide (VIP)-expressing (inhibitory) myenteric neurons. We found fundamental differences in the electrical properties of cholinergic and VIP neurons such that VIP neurons are more excitable than cholinergic neurons. Furthermore, MORs were primarily expressed in cholinergic neurons, although a subset of VIP neurons also expressed MORs and responded to morphine in electrophysiology experiments. In conclusion, these data show that morphine increases IL-18 in ileum myenteric plexus neurons via activation of MORs in a subset of cholinergic and VIP neurons. Thus, understanding the neurochemistry and electrophysiology of MOR-expressing enteric neurons can help to delineate mechanisms by which morphine perturbs the gut barrier. Graphic Abstract
更多
查看译文
关键词
Interleukin-18 (IL-18), Gut epithelial barrier, Mu-opioid receptor, Neurochemical coding, Chronic morphine, Enteric neurons
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要