Chrome Extension
WeChat Mini Program
Use on ChatGLM

Tailoring The Transport Properties Of Mesoporous Doped Cerium Oxide For Energy Applications

JOURNAL OF PHYSICAL CHEMISTRY C(2021)

Cited 6|Views7
No score
Abstract
Hard-template nanocasted mesoporous cerium oxide possesses a unique combination of thermal stability, high surface area, and short diffusion lengths for mass and gas transport, which makes it relevant for high-temperature catalysis, sensing, and electrochemical applications. Here, we present an in-depth study of a number of mesoporous doped ceria systems, and we assess their fundamental structure and functionalities by complementary transmission electron microscopy imaging and spectroscopy, electron tomography reconstructions, and electrochemical impedance spectroscopy. We employed surface chemical modifications for increasing the ionic conductivity of as-synthesized mesoporous Gd-doped ceria by 2 orders of magnitude, enabling the ionic pathway across mesoporous particles. Complementary bulk doping strategies (by the addition of Pr) result in the easy tuning of the electrical transport mechanisms converting pure ionic mesoporous ceria into a mixed ionic-electronic conductor. The results obtained here are rationalized in light of local charge accumulation and mobility effects, providing a potential tool for engineering transport properties in nanocasted ceria and similar nanostructured materials for use in energy applications in the form of functional composites, infiltrated structures, or catalytic layers.
More
Translated text
Key words
mesoporous doped cerium oxide,transport properties
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined