Tunable Mie Resonances in the Visible Spectrum

arxiv(2021)

引用 0|浏览3
暂无评分
摘要
Dielectric optical nanoantennas play an important role in color displays, metasurface holograms, and wavefront shaping applications. They usually exploit Mie resonances as supported on nanostructures with high refractive index, such as Si and TiO2. However, these resonances normally cannot be tuned. Although phase change materials, such as the germanium-antimony-tellurium alloys and post transition metal oxides, such as ITO, have been used to tune optical antennas in the near infrared spectrum, tunable dielectric antennae in the visible spectrum remain to be demonstrated. In this paper, we designed and experimentally demonstrated tunable dielectric nanoantenna arrays with Mie resonances in the visible spectrum, exploiting phase transitions in wide-bandgap Sb2S3 nano-resonators. In the amorphous state, Mie resonances in these Sb2S3 nanostructures give rise to a strong structural color in reflection mode. Thermal annealing induced crystallization and laser induced amorphization of the Sb2S3 resonators allow the color to be tuned reversibly. We believe these tunable Sb2S3 nanoantennae arrays will enable a wide variety of tunable nanophotonic applications, such as high-resolution color displays, holographic displays, and miniature LiDAR systems.
更多
查看译文
关键词
spectrum
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要