Single-cell RNA sequencing of human fetal epicardium reveals novel markers and regulators of EMT

EUROPEAN HEART JOURNAL(2021)

引用 0|浏览6
暂无评分
摘要
Abstract Background The heart is covered by the epicardium, consisting of epithelial cells and a mesenchymal layer. The epicardium has been shown to be essential during cardiac development by contributing cells through epithelial-to-mesenchymal transition (EMT) and the secretion of paracrine factors. In the adult, the epicardium conveys a cardioprotective response after myocardial infarction, albeit suboptimal compared to the epicardial contribution to heart development. Although the developing epicardium has been characterised in mice and zebrafish, knowledge on the human fetal epicardium derives mostly from cell culture models. Therefore, direct analysis of the human fetal epicardium is vital as it provides new insights into the cellular and biochemical interactions within the developing heart, which can potentially contribute to enhancing the post-injury response. Aim To study the human fetal epicardium using single-cell RNA sequencing (scRNA seq) in order to determine its cellular composition. The data are further explored to e.g. identify regulators of epicardial EMT. Methods Epicardial layers were isolated from four fetal human hearts (14–15 weeks gestation, obtained under informed consent and according to local ethical approval). Tissue was digested, and single live cells were sorted into 384-wells plates and sequenced. Data analysis was performed using R-packages RaceID3 and StemID2. Findings were validated using qPCR and immunohistochemistry. Results Analysis of 2073 cells reveals a clear clustering of the epicardial epithelium and the mesenchymal population. Importantly, we found that “classical” markers, such as Wilms' Tumor 1 and T-box transcription factor 18, are not specific enough to reliably identify the epicardium, but our analysis has provided markers that do allow for robust identification of the epicardium. Additionally, we were able to identify epicardial subpopulations based on their expression profile and validated these using immunohistochemistry in human fetal and adult heart tissue sections. To establish the regulation of epicardial activation we are focussing on the process of EMT within our dataset using RaceID2. From our analysis, several regulators of epicardial EMT are proposed that will be followed up on in vitro. Conclusions We identify various novel markers of the fetal epithelial epicardium, as well as characterizing markers of the mesenchymal layer. We also identified novel factors involved in epicardial EMT, and these are currently being validated in our cell-culture model. These data can provide new insights into the post-injury response in the adult heart. FUNDunding Acknowledgement Type of funding sources: Public grant(s) – National budget only. Main funding source(s): Dutch Heart Foundation
更多
查看译文
关键词
human fetal epicardium,rna,emt,single-cell
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要