A Novel Robust Observer-Based Nonlinear Trajectory Tracking Control Strategy for Quadrotors

IEEE Transactions on Control Systems Technology(2021)

引用 41|浏览29
暂无评分
摘要
In this article, a novel robust observer-based nonlinear control approach is proposed for quadrotors with unmodeled dynamics and external disturbances, wherein the tracking errors are restricted effectively. Two nonlinear disturbance observers are proposed to deal with uncertainties in the inner and outer loops, respectively. On this basis, a robust observer-based nonlinear control approach is put forward for quadrotor systems. Specifically, in the outer loop subsystem, a robust observer-based control scheme is proposed, which can reduce unexpected tracking errors for quadrotors effectively. Subsequently, based upon the geometric methods, the coordinate-free attitude controller and the nonlinear disturbance observer are integrated as a robust controller in the inner loop subsystem. Based upon full nonlinear dynamics, the solutions of the closed-loop system are proven to be uniformly ultimately bounded by means of rigorous Lyapunov analysis. A series of comparative experiments consisting of the implementation of a nonlinear proportional-integral-derivative (PID)-type controller, an observer-based sliding mode controller, and the proposed controller are conducted to demonstrate the remarkable performance of the proposed method in terms of higher tracking accuracy and stronger robustness.
更多
查看译文
关键词
Comparative experiments,disturbance observer,nonlinear control,quadrotor system,trajectory tracking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要