Methylation Of Cysteinyl Leukotriene Receptor 1 Genes Associates With Lung Function In Asthmatics Exposed To Traffic-Related Air Pollution

EPIGENETICS(2021)

Cited 7|Views44
No score
Abstract
Air pollution is associated with early declines in lung function and increased levels of asthma-related cysteinyl leukotrienes (CysLT) but a biological pathway linking this rapid response has not been delineated. In this randomized controlled diesel exhaust (DE) challenge study of 16 adult asthmatics, increased exposure-attributable urinary leukotriene E4 (uLTE4, a biomarker of cysteinyl leukotriene production) was correlated (p = 0.04) with declines in forced expiratory volume in 1-second (FEV1) within 6 hours of exposure. Exposure-attributable uLTE4 increases were correlated (p = 0.02) with increased CysLT receptor 1 (CysLTR1) methylation in peripheral blood mononuclear cells which, in turn, was marginally correlated (p = 0.06) with decreased CysLTR1 expression. Decreased CysLTR1 expression was, in turn, correlated (p = 0.0007) with FEV(1)declines. During the same time period, increased methylation of GPR17 (a negative regulator of CysLTR1) was observed after DE exposure (p = 0.02); this methylation increase was correlated (p = 0.001) with decreased CysLTR1 methylation which, in turn, was marginally correlated (p = 0.06) with increased CysLTR1 expression; increased CysLTR1 expression was correlated (p = 0.0007) with FEV(1)increases. Collectively, these data delineate a potential mechanistic pathway linking increased DE exposure-attributable CysLT levels to lung function declines through changes in CysLTR1-related methylation and gene expression.
More
Translated text
Key words
Asthma, cysteinyl leukotriene, diesel exhaust, epigenetics, GPR17, methylation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined