Adaptation of pancreatic cancer cells to nutrient deprivation is reversible and requires glutamine synthetase stabilization by mTORC1

Proceedings of the National Academy of Sciences of the United States of America(2020)

Cited 32|Views42
No score
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal, therapy-resistant cancer that thrives in a highly desmoplastic, nutrient-deprived microenvironment. Several studies investigated the effects of depriving PDA of either glucose or glutamine alone. However, the consequences on PDA growth and metabolism of limiting both preferred nutrients have remained largely unknown. Here, we report the selection for clonal human PDA cells that survive and adapt to limiting levels of both glucose and glutamine. We find that adapted clones exhibit increased growth in vitro and enhanced tumor-forming capacity in vivo . Mechanistically, adapted clones share common transcriptional and metabolic programs, including amino acid use for de novo glutamine and nucleotide synthesis. They also display enhanced mTORC1 activity that prevents the proteasomal degradation of glutamine synthetase (GS), the rate-limiting enzyme for glutamine synthesis. This phenotype is notably reversible, with PDA cells acquiring alterations in open chromatin upon adaptation. Silencing of GS suppresses the enhanced growth of adapted cells and mitigates tumor growth. These findings identify non-genetic adaptations to nutrient deprivation in PDA and highlight GS as a dependency that could be targeted therapeutically in pancreatic cancer patients. Significance Pancreatic ductal adenocarcinoma (PDA) is a highly lethal malignancy with no effective therapies. PDA aggressiveness partly stems from its ability to grow within a uniquely dense stroma restricting nutrient access. This study demonstrates that PDA clones that survive chronic nutrient deprivation acquire reversible non-genetic adaptations allowing them to switch between metabolic states optimal for growth under nutrient-replete or nutrient-deprived conditions. One contributing factor to this adaptation mTORC1 activation, which stabilizes glutamine synthetase (GS) necessary for glutamine generation in nutrient-deprived cancer cells. Our findings imply that although total GS levels may not be a prognostic marker for aggressive disease, GS inhibition is of high therapeutic value, as it targets specific cell clusters adapted to nutrient starvation, thus mitigating tumor growth. ### Competing Interest Statement The authors have declared no competing interest.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined