Application Of Lipase Immobilized On A Hydrophobic Support For The Synthesis Of Aromatic Esters

BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY(2021)

Cited 18|Views2
No score
Abstract
The present study aimed at preparing three biocatalysts via physical adsorption of lipases from Candida rugosa (CRL), Mucor javanicus, and Candida sp. on a hydrophobic and mesoporous support (Diaion HP-20). These biocatalysts were later applied to the synthesis of aromatic esters of apple peel and citrus (hexyl butyrate), apple and rose (geranyl butyrate), and apricot and pineapple (propyl butyrate). Scanning electron microscopy and gel electrophoresis confirmed a selective adsorption of lipases on Diaion, thus endorsing simultaneous immobilization and purification. Gibbs free energy ( increment G) evinced the spontaneity of the process (-17.9 kJ/mol <= increment G <= -5.1 kJ/mol). Maximum immobilized protein concentration of 30 mg/g support by CRL. This biocatalyst was the most active in olive oil hydrolysis (hydrolytic activity of 126.0 +/- 2.0 U/g) and in the synthesis of aromatic esters. Maximum conversion yield of 89.1% was attained after 150 Min for the synthesis of hexyl butyrate, followed by the synthesis of geranyl butyrate (87.3% after 240 Min) and propyl butyrate (80.0% after 150 Min). CRL immobilized on Diaion retained around 93% of its original activity after six consecutive cycles of 150 Min for the synthesis of hexyl butyrate.
More
Translated text
Key words
biocatalysis, lipase immobilization, aroma synthesis
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined