Chrome Extension
WeChat Mini Program
Use on ChatGLM

Loss of DNA Methyltransferase Activity in Primed Human ES Cells Triggers Increased Cell-Cell Variability and Transcriptional Repression

DEVELOPMENT(2019)

Cited 12|Views23
No score
Abstract
Maintenance of pluripotency and specification towards a new cell fate are both dependent on precise interactions between extrinsic signals and transcriptional and epigenetic regulators. Directed methylation of cytosines by the de novo methyltransferases DNMT3A and DNMT3B plays an important role in facilitating proper differentiation, whereas DNMT1 is essential for maintaining global methylation levels in all cell types. Here, we generated single-cell mRNA expression data from wild-type, DNMT3A, DNMT3A/3B and DNMT1 knockout human embryonic stem cells and observed a widespread increase in cellular and transcriptional variability, even with limited changes in global methylation levels in the de novo knockouts. Furthermore, we found unexpected transcriptional repression upon either loss of the de novo methyltransferase DNMT3A or the double knockout of DNMT3A/3B that is further propagated upon differentiation to mesoderm and ectoderm. Taken together, our single-cell RNA-sequencing data provide a high-resolution view into the consequences of depleting the three catalytically active DNMTs in human pluripotent stem cells.
More
Translated text
Key words
DNA methylation,DNA methyltransferases,Pluripotency,Single-cell RNA-sequencing
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined