Carbohydrates-rich corncobs supported metal-organic frameworks as versatile biosorbents for dye removal and microbial inactivation.

Carbohydrate polymers(2019)

引用 99|浏览10
暂无评分
摘要
In this work, biodegradable cellulose-based biosorbents (MOFs/OCBs) with dual function of dye removal and microbial inactivation were fabricated by in situ anchoring metal-organic frameworks (MOFs) on the TEMPO oxidized corncobs (OCBs). Results showed that delignification and oxidation can develop the OCBs with more cellulose content, carboxyl groups and specific surface area, thus facilitating the deposition of MOFs. The porous and carbohydrate-rich OCBs can serve as supports and stabilizers for MOFs, allowing for enhanced stability and recyclability of MOFs powders. The MOFs, namely HKUST-1 and ZIF-8, can endow the OCBs multiple functions of good adsorption capacity to methyl orange (from 8% of OCBs to 55% of HKUST-1/OCBs and 84% of ZIF-8/OCBs) and excellent antibacterial activity (from 0 of OCBs to 90.2% of HKUST-1/OCBs and 44.8% of ZIF-8/OCBs). Such a concept may offer a new pathway for preparing economical and efficient biosorbents for environmental remedy purposes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要