Characterization of molecular mechanisms underlying the axonal Charcot–Marie–Tooth neuropathy caused by MORC2 mutations

HUMAN MOLECULAR GENETICS(2019)

引用 28|浏览33
暂无评分
摘要
Mutations in MORC2 lead to an axonal form of Charcot-Marie-Tooth (CMT) neuropathy type 2Z. To date, 31 families have been described with mutations in MORC2, indicating that this gene is frequently involved in axonal CMT cases. While the genetic data clearly establish the causative role of MORC2 in CMT2Z, the impact of its mutations on neuronal biology and their phenotypic consequences in patients remains to be clarified. We show that the full-length form of MORC2 is highly expressed in both embryonic and adult human neural tissues and that Morc2 expression is dynamically regulated in both the developing and the maturing murine nervous system. To determine the effect of the most common MORC2 mutations, p.S87L and p.R252W, we used several in vitro cell culture paradigms. Both mutations induced transcriptional changes in patient-derived fibroblasts and when expressed in rodent sensory neurons. These changes were more pronounced and accompanied by abnormal axonal morphology, in neurons expressing the MORC2 p.S87L mutation, which is associated with a more severe clinical phenotype. These data provide insight into the neuronal specificity of the mutated MORC2-mediated phenotype and highlight the importance of neuronal cell models to study the pathophysiology of CMT2Z.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要