Quantifying the flexibility of hydrogen production systems to support large-scale renewable energy integration

Journal of Power Sources(2018)

引用 65|浏览6
暂无评分
摘要
Hydrogen is a flexible energy carrier that can be produced in various ways and support a variety of applications including industrial processes, energy storage and electricity production, and can serve as an alternative transportation fuel. Hydrogen can be integrated in multiple energy sectors and has the potential to increase overall energy system flexibility, improve energy security, and reduce environmental impact. In this paper, the interactions between fuel cell electric vehicles (FCEVs), hydrogen production facilities, and the electric power grid are explored. The flexibility of hydrogen production systems can create synergistic opportunities to better integrate renewable sources into the electricity system. To quantify this potential, we project the hourly system-wide balancing challenges in California out to 2025 as more renewables are deployed and electricity demand continues to grow. Passenger FCEV adoption and refueling behavior are modeled in detail to spatially and temporally resolve the hydrogen demand. We then quantify the system-wide balancing benefits of controlling hydrogen production from water electrolysis to mitigate renewable intermittency, without compromising the mobility needs of FCEV drivers. Finally, a control algorithm that can achieve different objectives, including peak shaving, valley filling, and ramping mitigation is proposed. Our results show that oversizing electrolyzers can provide considerable benefits to mitigate renewable intermittency, while also supporting the deployment of hydrogen vehicles to help decarbonize the transportation sector.
更多
查看译文
关键词
Grid integration,Hydrogen,Fuel cell electric vehicle,Renewable energy,Electric power system,Duck curve
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要