Novel computational method for predicting polytherapy switching strategies to overcome tumor heterogeneity and evolution

SCIENTIFIC REPORTS(2017)

引用 26|浏览25
暂无评分
摘要
The success of targeted cancer therapy is limited by drug resistance that can result from tumor genetic heterogeneity. The current approach to address resistance typically involves initiating a new treatment after clinical/radiographic disease progression, ultimately resulting in futility in most patients. Towards a potential alternative solution, we developed a novel computational framework that uses human cancer profiling data to systematically identify dynamic, pre-emptive, and sometimes non-intuitive treatment strategies that can better control tumors in real-time. By studying lung adenocarcinoma clinical specimens and preclinical models, our computational analyses revealed that the best anti-cancer strategies addressed existing resistant subpopulations as they emerged dynamically during treatment. In some cases, the best computed treatment strategy used unconventional therapy switching while the bulk tumor was responding, a prediction we confirmed in vitro . The new framework presented here could guide the principled implementation of dynamic molecular monitoring and treatment strategies to improve cancer control.
更多
查看译文
关键词
Computational models,Non-small-cell lung cancer,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要