Microbial inactivation and cytotoxicity evaluation of UV irradiated coconut water in a novel continuous flow spiral reactor

Food Research International(2018)

引用 50|浏览6
暂无评分
摘要
A continuous-flow UV reactor operating at 254nm wave-length was used to investigate inactivation of microorganisms including bacteriophage in coconut water, a highly opaque liquid food. UV-C inactivation kinetics of two surrogate viruses (MS2, T1UV) and three bacteria (E. coli ATCC 25922, Salmonella Typhimurium ATCC 13311, Listeria monocytogenes ATCC 19115) in buffer and coconut water were investigated (D10 values ranging from 2.82 to 4.54mJ·cm−2). A series of known UV-C doses were delivered to the samples. Inactivation levels of all organisms were linearly proportional to UV-C dose (r2>0.97). At the highest dose of 30mJ·cm−2, the three pathogenic organisms were inactivated by >5 log10 (p<0.05). Results clearly demonstrated that UV-C irradiation effectively inactivated bacteriophage and pathogenic microbes in coconut water. The inactivation kinetics of microorganisms were best described by log linear model with a low root mean square error (RMSE) and high coefficient of determination (r2>0.97). Models for predicting log reduction as a function of UV-C irradiation dose were found to be significant (p<0.05) with low RMSE and high r2. The irradiated coconut water showed no cytotoxic effects on normal human intestinal cells and normal mouse liver cells. Overall, these results indicated that UV-C treatment did not generate cytotoxic compounds in the coconut water. This study clearly demonstrated that high levels of inactivation of pathogens can be achieved in coconut water, and suggested potential method for UV-C treatment of other liquid foods.
更多
查看译文
关键词
UV-C irradiation,Continuous-flow UV reactor,Bio-dosimetry,Microbial inactivation,Bacteriophage,Inactivation kinetics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要