Generation Of A Crispr Database For Yersinia Pseudotuberculosis Complex And Role Of Crispr-Based Immunity In Conjugation

ENVIRONMENTAL MICROBIOLOGY(2015)

引用 22|浏览10
暂无评分
摘要
The clustered regularly interspaced short palindromic repeat - CRISPR-associated genes (CRISPR-Cas) system is used by bacteria and archaea against invading conjugative plasmids or bacteriophages. Central to this immunity system are genomic CRISPR loci that contain fragments of invading DNA. These are maintained as spacers in the CRISPR loci between direct repeats and the spacer composition in any bacterium reflects its evolutionary history. We analysed the CRISPR locus sequences of 335 Yersinia pseudotuberculosis complex strains. Altogether 1902 different spacer sequences were identified and these were used to generate a database for the spacer sequences. Only approximate to 10% of the spacer sequences found matching sequences. In addition, surprisingly few spacers were shared by Yersinia pestis and Y.pseudotuberculosis strains. Interestingly, 32 different protospacers were present in the conjugative plasmid pYptb32953. The corresponding spacers were identified from 35 different Y.pseudotuberculosis strains indicating that these strains had encountered pYptb32953 earlier. In conjugation experiments, pYptb32953-specific spacers generally prevented conjugation with spacer-positive and spacer-free strains. However, some strains with one to four spacers were invaded by pYptb32953 and some spacer-free strains were fully resistant. Also some spacer-positive strains were intermediate resistant to conjugation. This suggests that one or more other defence systems are determining conjugation efficiency independent of the CRISPR-Cas system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要