Efficacy of an EGFR-specific peptide against EGFR-dependent cancer cell lines and tumor xenografts.

Neoplasia(2014)

Cited 27|Views23
No score
Abstract
We have recently synthesized a peptide called Disruptin, which comprised the SVDNPHVC segment of the epidermal growth factor receptor (EGFR) that inhibits binding of heat shock protein 90 (Hsp90) to the EGFR and EGF-dependent EGFR dimerization to cause EGFR degradation. The effect is specific for EGFR versus other Hsp90 client proteins [Ahsan et al.: (2013). Destabilization of the epidermal growth factor receptor (EGFR) by a peptide that inhibits EGFR binding to heat shock protein 90 and receptor dimerization. J Biol Chem288, 26879–26886]. Here, we show that Disruptin decreases the clonogenicity of a variety of EGFR-dependent cancer cells in culture but not of EGFR-independent cancer or noncancerous cells. The selectivity of Disruptin toward EGFR-driven cancer cells is due to the high level of EGF stimulation of EGFR in EGFR-dependent tumor cells relative to normal cells. When administered by intraperitoneal injection into nude mice bearing EGFR-driven human tumor xenografts, Disruptin causes extensive degradation of EGFR in the tumor but not in adjacent host tissue. Disruptin markedly inhibits the growth of EGFR-driven tumors without producing the major toxicities caused by the Hsp90 inhibitor geldanamycin or by cisplatin. These findings provide proof of concept for development of a new Disruptin-like class of antitumor drugs that are directed specifically against EGFR-driven tumors.
More
Translated text
Key words
cho cells
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined