BRVO: Predicting pedestrian trajectories using velocity-space reasoning

International Journal of Robotics Research(2015)

引用 121|浏览162
暂无评分
摘要
We introduce a novel, online method to predict pedestrian trajectories using agent-based velocity-space reasoning for improved human-robot interaction and collision-free navigation. Our formulation uses velocity obstacles to model the trajectory of each moving pedestrian in a robot's environment and improves the motion model by adaptively learning relevant parameters based on sensor data. The resulting motion model for each agent is computed using statistical inferencing techniques, including a combination of ensemble Kalman filters and a maximum-likelihood estimation algorithm. This allows a robot to learn individual motion parameters for every agent in the scene at interactive rates. We highlight the performance of our motion prediction method in real-world crowded scenarios, compare its performance with prior techniques, and demonstrate the improved accuracy of the predicted trajectories. We also adapt our approach for collision-free robot navigation among pedestrians based on noisy data and highlight the results in our simulator.
更多
查看译文
关键词
Trajectory prediction,multi-agent simulation,collision avoidance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要