Experimental vibration analysis for structural identification of a long-span suspension bridge

JOURNAL OF ENGINEERING MECHANICS(2013)

引用 44|浏览8
暂无评分
摘要
Structural identification (St-Id) of long-span bridges by ambient vibration testing provides a starting point for quantitatively characterizing the actual in-service mechanical characteristics and behaviors of these complex constructed systems. However, various uncertainties involved in the experimental and identification processes impact the reliability of St-Id, especially if vibration testing is the sole experiment. Such uncertainties represent perhaps the most fundamental barrier to more widespread applications of measurements in civil engineering practice. The goal of this paper is to leverage a vibration test of a long-span suspension bridge to illustrate a number of possible strategies for coping with the uncertainties confronted when identifying the dynamic characteristics of large-scale constructed systems. The design and implementation of a field test in the context of St-Id are first presented to illustrate how uncertainties can be mitigated by following a disciplined approach to designing the experiment. Next, data preprocessing strategies including data inspection, time window selection, band-pass filtering, averaging, and windowing are proposed to reduce data errors. Three separate postprocessing methods, including Peak Picking, PolyMAX, and Complex Mode Indicator Function, are executed independently to verify the reliability of the data processing results. Experimental results for both the towers and suspended spans are correlated with simulations from three-dimensional finite-element analysis of the long-span bridge for St-Id. DOI: 10.1061/(ASCE)EM.1943-7889.0000416. (C) 2013 American Society of Civil Engineers.
更多
查看译文
关键词
Structural identification,Ambient vibration,Signal processing,Uncertainty reduction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要