Targeted degradation of IKZF2 for cancer immunotherapy

Research Square (Research Square)(2022)

引用 0|浏览9
暂无评分
摘要
Abstract Growing malignant tumors must evade destruction by the immune system, a hurdle some malignancies overcome by attracting immune-suppressive regulatory T-cells (Tregs)1. The IKZF2 (Helios) transcription factor plays a crucial role in maintaining function and stability of Tregs, and IKZF2 deficiency enhances immune responses to tumors in mice2, suggesting IKZF2 may be an attractive target for cancer immunotherapy. Here we describe the discovery and characterization of DKY709, the first molecular glue degrader of IKZF2/4 which spares IKZF1/3. DKY709 was identified through a recruitment-guided medicinal chemistry campaign that redirected the degradation selectivity of CRBN binders towards IKZF2. The IKZF transcription factor selectivity of DKY709 was rationalized by the X-ray structure of the CRBN-DKY709-IKZF2(ZF2) ternary complex. Upon exposure to DKY709, human Tregs showed reduced suppressive activity and exhausted T-effector cells recovered IFNγ production. In vivo, oral treatment with DKY709 drove a rapid and sustained degradation of IKZF2 including in humans and led to delayed tumor growth in mice with humanized immune systems and enhanced immunization responses in monkeys. DKY709 is a first-in-class, potent and selective oral IKZF2/4 degrader currently being investigated in a phase 1 clinical trial as an immune-enhancing agent for cancer immunotherapy.
更多
查看译文
关键词
ikzf2,immunotherapy,targeted degradation,cancer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要