Temporally distinct response of irradiated normal human fibroblasts and their bystander cells to energetic heavy ions.

Mutation research(2008)

引用 57|浏览9
暂无评分
摘要
Ionizing radiation-induced bystander effects have been documented for a multitude of endpoints such as mutations, chromosome aberrations and cell death, which arise in nonirradiated bystander cells having received signals from directly irradiated cells; however, energetic heavy ion-induced bystander response is incompletely characterized. To address this, we employed precise microbeams of carbon and neon ions for targeting only a very small fraction of cells in confluent fibroblast cultures. Conventional broadfield irradiation was conducted in parallel to see the effects in irradiated cells. Exposure of 0.00026% of cells led to nearly 10% reductions in the clonogenic survival and twofold rises in the apoptotic incidence regardless of ion species. Whilst apoptotic frequency increased with time up to 72 h postirradiation in irradiated cells, its frequency escalated up to 24h postirradiation but declined at 48 h postirradiation in bystander cells, indicating that bystander cells exhibit transient commitment to apoptosis. Carbon- and neon-ion microbeam irradiation similarly caused almost twofold increments in the levels of serine 15-phosphorylated p53 proteins, irrespective of whether 0.00026, 0.0013 or 0.0066% of cells were targeted. Whereas the levels of phosphorylated p53 were elevated and remained unchanged at 2h and 6h postirradiation in irradiated cells, its levels rose at 6h postirradiation but not at 2h postirradiation in bystander cells, suggesting that bystander cells manifest delayed p53 phosphorylation. Collectively, our results indicate that heavy ions inactivate clonogenic potential of bystander cells, and that the time course of the response to heavy ions differs between irradiated and bystander cells. These induced bystander responses could be a defensive mechanism that minimizes further expansion of aberrant cells.
更多
查看译文
关键词
ionizing radiation,heavy ions,bystander effect,broadbeam,microbeam,normal human diploid fibroblasts
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要