基本信息
浏览量:310

个人简介
Bill Davies’ research work has provided a novel view of how above-ground plant parts can “sense” changes in both their atmospheric and edaphic environments. The work has also provided insight into the ways in which different environmental stresses interact in their effects on plant growth and functioning through changes in both chemical and hydraulic regulation. In recent years our discoveries have led to radical changes in irrigation practice and to the introduction of crop management techniques which contribute to sustainable intensification of agriculture in drought-prone environments. The work is helping to deliver sustained levels of food production in dry regions of the world, while also addressing the issue of world-wide conservation of water resources. Particularly strong collaborations in this area have existed (and in most cases continue) with CSIRO Adelaide (Brian Loveys), with Manuela Chaves and Joao Santos-Pereira (UTL Lisbon), with HK Baptist University (Jianhua Zhang), with CAU (Shaozhong Kang and Taishen Du) and with Jianbo Shen and Fusuo Zhang, also at China Agricultural University.
The Lancaster plant water group leads a campus-wide and an international effort to address the issue of food insecurity through both collaborative research and training programmes. One of the features of this work has been extensive collaboration with growers, suppliers and retailers with an emphasis on making novel opportunities in sustainable agriculture available to producers and suppliers around the world. A lot of this work has been with smallholders in China and also with those working in the UK food supply chain. A collaboration with Waitrose supermarkets has been central to much of this work. In addition to collaborative research we run a postgraduate professional training programme for those working in the supply chain and we also play a leading role in the Waitrose Farm Assessment which has now run for the last 9 years.
Davies’ group was responsible for some of the first research which highlighted the possibility that control of gas exchange and growth via chemical regulation could explain many of the responses seen in plants growing in drying soil and subjected to other abiotic stresses. Prior to this time, the predominant view in the literature was that soil drying and other stresses modified plant growth, functioning and development only after uptake of water was reduced and water deficits had developed in the leaves. As a result of the Lancaster group's work there has been a paradigm shift in our thinking about plant responses to drought. This has led not only to entirely new perspectives on what actually constitutes the commonly-occurring phenomenon of 'plant water stress', but also has pointed to new possibilities for the modification of plant growth and food production via simple agronomical strategies as well as innovative biotechnological manipulations. Further, our understanding of the ways in which plants can detect and respond to very mild soil drying provides some explanation of how plant communities and landscape may be affected by modified rainfall patterns under a changing climate.
The Lancaster plant water group leads a campus-wide and an international effort to address the issue of food insecurity through both collaborative research and training programmes. One of the features of this work has been extensive collaboration with growers, suppliers and retailers with an emphasis on making novel opportunities in sustainable agriculture available to producers and suppliers around the world. A lot of this work has been with smallholders in China and also with those working in the UK food supply chain. A collaboration with Waitrose supermarkets has been central to much of this work. In addition to collaborative research we run a postgraduate professional training programme for those working in the supply chain and we also play a leading role in the Waitrose Farm Assessment which has now run for the last 9 years.
Davies’ group was responsible for some of the first research which highlighted the possibility that control of gas exchange and growth via chemical regulation could explain many of the responses seen in plants growing in drying soil and subjected to other abiotic stresses. Prior to this time, the predominant view in the literature was that soil drying and other stresses modified plant growth, functioning and development only after uptake of water was reduced and water deficits had developed in the leaves. As a result of the Lancaster group's work there has been a paradigm shift in our thinking about plant responses to drought. This has led not only to entirely new perspectives on what actually constitutes the commonly-occurring phenomenon of 'plant water stress', but also has pointed to new possibilities for the modification of plant growth and food production via simple agronomical strategies as well as innovative biotechnological manipulations. Further, our understanding of the ways in which plants can detect and respond to very mild soil drying provides some explanation of how plant communities and landscape may be affected by modified rainfall patterns under a changing climate.
研究兴趣
论文共 9 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
Developing drought-resistant cereals Burleigh Dodds Series in Agricultural Sciencepp.23-72, (2024)
作者统计
#Papers: 9
#Citation: 708
H-Index: 6
G-Index: 6
Sociability: 3
Diversity: 2
Activity: 1
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn