基本信息
浏览量:130

个人简介
Research
Peroxisome Homeostasis In Yeast And Humans
We are interested in the problem of organelle homeostasis, using peroxisomes as the model organelle. Like all other subcellular organelles, peroxisomes and peroxisomal functions are indispensable for human survival. Our studies on peroxisome homeostasis examine how peroxisomes are assembled (biogenesis) and destroyed (turnover or pexophagy), as well as the coordination of these two processes within cells. We are also interested in the role of peroxisome biogenesis and turnover in disease states.
Peroxisome biogenesis: Work done in this and other labs has uncovered about 36 peroxins, encoded by PEX genes, involved in peroxisome biogenesis. Many proteins involved in this process are conserved in evolution from yeast to man, and inactivating mutations in at least half of these peroxins cause fatal human disorders (Zellweger syndrome, rhizomelic chondrodysplasia punctata and infantile Refsum disease). Work on peroxisome biogenesis is summarized in a review (Farré et al., EMBO Reports, 2018, PMID: 30530632).
Current work focuses on the trafficking of peroxisomal membrane proteins via the endoplasmic reticulum, their budding into pre-peroxisomal vesicles (ppV) and the proteins and mechanisms involved in this ppV budding.
Peroxisome degradation: Autophagy is a process in which cells eat themselves, especially under starvation conditions, and recycle cellular building blocks such as amino acids, lipids and sugars. Autophagy plays a key role in development, aging, neurodegeneration, cell death, cell survival, and innate immunity. While autophagy generally degrades cargoes non-selectively, it can also be adapted to degrade and recycle selective cargoes, including organelles and protein aggregates. Pexophagy is a turnover pathway in which redundant, damaged or unnecessary peroxisomes are selectively degraded by the autophagy machinery in response to specific environmental cues. Other selective autophagy pathways include mitophagy, ribophagy, ER-phagy, micronucleophagy and the Cvt pathway in yeasts. Progress in the field of selective autophagy may be found in a review (Farré et al., Nature Rev. Mol. Cell Biol., 2016, PMC5549613).
Peroxisome Homeostasis In Yeast And Humans
We are interested in the problem of organelle homeostasis, using peroxisomes as the model organelle. Like all other subcellular organelles, peroxisomes and peroxisomal functions are indispensable for human survival. Our studies on peroxisome homeostasis examine how peroxisomes are assembled (biogenesis) and destroyed (turnover or pexophagy), as well as the coordination of these two processes within cells. We are also interested in the role of peroxisome biogenesis and turnover in disease states.
Peroxisome biogenesis: Work done in this and other labs has uncovered about 36 peroxins, encoded by PEX genes, involved in peroxisome biogenesis. Many proteins involved in this process are conserved in evolution from yeast to man, and inactivating mutations in at least half of these peroxins cause fatal human disorders (Zellweger syndrome, rhizomelic chondrodysplasia punctata and infantile Refsum disease). Work on peroxisome biogenesis is summarized in a review (Farré et al., EMBO Reports, 2018, PMID: 30530632).
Current work focuses on the trafficking of peroxisomal membrane proteins via the endoplasmic reticulum, their budding into pre-peroxisomal vesicles (ppV) and the proteins and mechanisms involved in this ppV budding.
Peroxisome degradation: Autophagy is a process in which cells eat themselves, especially under starvation conditions, and recycle cellular building blocks such as amino acids, lipids and sugars. Autophagy plays a key role in development, aging, neurodegeneration, cell death, cell survival, and innate immunity. While autophagy generally degrades cargoes non-selectively, it can also be adapted to degrade and recycle selective cargoes, including organelles and protein aggregates. Pexophagy is a turnover pathway in which redundant, damaged or unnecessary peroxisomes are selectively degraded by the autophagy machinery in response to specific environmental cues. Other selective autophagy pathways include mitophagy, ribophagy, ER-phagy, micronucleophagy and the Cvt pathway in yeasts. Progress in the field of selective autophagy may be found in a review (Farré et al., Nature Rev. Mol. Cell Biol., 2016, PMC5549613).
研究兴趣
论文共 322 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
bioRxiv the preprint server for biology (2025)
Maxwell L. Neal,Nandini Shukla,Fred D. Mast,Jean-Claude Farre, Therese M. Pacio, Katelyn E. Raney-Plourde, Sumedh Prasad,Suresh Subramani,John D. Aitchison
bioRxiv the preprint server for biology (2024)
Subhashini Srinivasan,Chaitali Ghosh, Shrestha Das,Aditi Thakare, Siddharth Singh, Apoorva Ganesh, Harsh Mahawar, Aadhya Jaisimha, Mohanapriya Krishna,Aritra Chattopadhyay, Rishima Borah,Vikrant Singh,M. Soumya,Naveen Kumar,Sampath Kumar,Sunita Swain,Suresh Subramani
加载更多
作者统计
#Papers: 322
#Citation: 27407
H-Index: 88
G-Index: 162
Sociability: 6
Diversity: 3
Activity: 20
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn