谷歌浏览器插件
订阅小程序
在清言上使用

BoFire: Bayesian Optimization Framework Intended for Real Experiments

Johannes P. Dürholt, Thomas S. Asche, Johanna Kleinekorte, Gabriel Mancino-Ball, Benjamin Schiller, Simon Sung, Julian Keupp, Aaron Osburg, Toby Boyne,Ruth Misener, Rosona Eldred, Wagner Steuer Costa, Chrysoula Kappatou,Robert M. Lee, Dominik Linzner,David Walz, Niklas Wulkow,Behrang Shafei

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Our open-source Python package BoFire combines Bayesian Optimization (BO) with other design of experiments (DoE) strategies focusing on developing and optimizing new chemistry. Previous BO implementations, for example as they exist in the literature or software, require substantial adaptation for effective real-world deployment in chemical industry. BoFire provides a rich feature-set with extensive configurability and realizes our vision of fast-tracking research contributions into industrial use via maintainable open-source software. Owing to quality-of-life features like JSON-serializability of problem formulations, BoFire enables seamless integration of BO into RESTful APIs, a common architecture component for both self-driving laboratories and human-in-the-loop setups. This paper discusses the differences between BoFire and other BO implementations and outlines ways that BO research needs to be adapted for real-world use in a chemistry setting.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要