谷歌浏览器插件
订阅小程序
在清言上使用

Modelling DSA, FAST and CRAFT surveys in a z-DM analysis and constraining a minimum FRB energy

Jordan Hoffmann,Clancy W. James,Marcin Glowacki,Jason X. Prochaska,Alexa C. Gordon, Adam T. Deller,Ryan M. Shannon, Stuart D. Ryder

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Fast radio burst (FRB) science primarily revolves around two facets: the origin of these bursts and their use in cosmological studies. This work follows from previous redshift-dispersion measure ($z$-DM) analyses in which we model instrumental biases and simultaneously fit population parameters and cosmological parameters to the observed population of FRBs. This sheds light on both the progenitors of FRBs and cosmological questions. Previously, we have completed similar analyses with data from the Australian Square Kilometer Array Pathfinder (ASKAP) and the Murriyang (Parkes) Multibeam system. With this manuscript, we additionally incorporate data from the Deep Synoptic Array (DSA) and the Five-hundred-meter Aperture Spherical Telescope (FAST), invoke a Markov chain Monte Carlo (MCMC) sampler and implement uncertainty in the Galactic DM contributions. The latter leads to larger uncertainties in derived model parameters than previous estimates despite the additional data. We provide refined constraints on FRB population parameters and derive a new constraint on the minimum FRB energy of log$\,E_{\mathrm{min}}$(erg)=39.49$^{+0.39}_{-1.48}$ which is significantly higher than bursts detected from strong repeaters. This result may indicate a low-energy turnover in the luminosity function or may suggest that strong repeaters have a different luminosity function to single bursts. We also predict that FAST will detect 25-41% of their FRBs at $z \gtrsim 2$ and DSA will detect 2-12% of their FRBs at $z \gtrsim 1$.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要