Chrome Extension
WeChat Mini Program
Use on ChatGLM

Step-by-step optimization of a heterologous pathway for de novo naringenin production in Escherichia coli

Daniela Gomes, Joana L. Rodrigues,Ligia R. Rodrigues

Applied Microbiology and Biotechnology(2024)

Cited 0|Views0
No score
Abstract
Naringenin is a plant polyphenol, widely explored due to its interesting biological activities, namely anticancer, antioxidant, and anti-inflammatory. Due to its potential applications and attempt to overcome the industrial demand, there has been an increased interest in its heterologous production. The microbial biosynthetic pathway to produce naringenin is composed of tyrosine ammonia-lyase (TAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), and chalcone isomerase (CHI). Herein, we targeted the efficient de novo production of naringenin in Escherichia coli by performing a step-by-step validation and optimization of the pathway. For that purpose, we first started by expressing two TAL genes from different sources in three different E. coli strains. The highest p-coumaric acid production (2.54 g/L) was obtained in the tyrosine-overproducing M-PAR-121 strain carrying TAL from Flavobacterium johnsoniae (FjTAL). Afterwards, this platform strain was used to express different combinations of 4CL and CHS genes from different sources. The highest naringenin chalcone production (560.2 mg/L) was achieved by expressing FjTAL combined with 4CL from Arabidopsis thaliana (At4CL) and CHS from Cucurbita maxima (CmCHS). Finally, different CHIs were tested and validated, and 765.9 mg/L of naringenin was produced by expressing CHI from Medicago sativa (MsCHI) combined with the other previously chosen genes. To our knowledge, this titer corresponds to the highest de novo production of naringenin reported so far in E. coli. • Best enzyme and strain combination were selected for de novo naringenin production. • After genetic and operational optimizations, 765.9 mg/L of naringenin was produced. • This de novo production is the highest reported so far in E. coli.
More
Translated text
Key words
Naringenin,Escherichia coli,De novo biosynthesis,Synthetic biology,Heterologous production
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined