Chrome Extension
WeChat Mini Program
Use on ChatGLM

Intertwined Superconductivity and Magnetism from Repulsive Interactions in Kondo Bilayers

arxiv(2024)

Cited 0|Views0
No score
Abstract
While superconductors are conventionally established by attractive interactions, higher-temperature mechanisms for emergent electronic pairing from strong repulsive electron-electron interactions remain under considerable scrutiny. Here, we establish a strong-coupling mechanism for intertwined superconductivity and magnetic order from purely repulsive interactions in a Kondo-like bilayer system, composed of a two-dimensional Mott insulator coupled to a layer of weakly-interacting itinerant electrons. Combining large scale DMRG and Monte Carlo simulations, we find that superconductivity persists and coexists with magnetism over a wide range of interlayer couplings. We classify the resulting rich phase diagram and find 2-rung antiferromagnetic and 4-rung antiferromagnetic order in one-dimensional systems along with a phase separation regime, while finding that superconductivity coexists with either antiferromagnetic or ferromagnetic order in two dimensions. Remarkably, the model permits a rigorous strong-coupling analysis via localized spins coupled to charge-2e bosons through Kugel-Khomskii interactions, capturing the pairing mechanism in the presence of magnetism due to emergent attractive interactions. Our numerical analysis reveals that pairing remains robust well beyond the strong-coupling regime, establishing a new mechanism for superconductivity in coupled weakly- and strongly-interacting electron systems, relevant for infinite-layer nickelates and superconductivity in moire multilayer heterostructures.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined