谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Gallic Acid Enhances the Efficacy of BCR::ABL1 Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia through Inhibition of Mitochondrial Respiration and Modulation of Oncogenic Signaling Pathways.

Wei Xiang,Colin Sng, Yi-Hui Lam, Ze-Hui Kok,Yeh-Ching Linn,Soek-Ying Neo,Yin-Yin Siew,Deepika Singh, Hwee-Ling Koh, Charles Chuah

International Journal of Molecular Sciences(2024)

引用 0|浏览1
暂无评分
摘要
While BCR::ABL1 tyrosine kinase inhibitors have transformed the treatment paradigm for chronic myeloid leukemia (CML), disease progression and treatment resistance due to BCR::ABL1-dependent and BCR::ABL1-independent mechanisms remain a therapeutic challenge. Natural compounds derived from plants have significantly contributed to cancer pharmacotherapy. This study investigated the efficacy of an active component of Leea indica, a local medicinal plant, in CML. Using high-performance liquid chromatography-electrospray ionization-mass spectrometry, a chemical constituent from L. indica extract was isolated and identified as gallic acid. Commercially obtained gallic acid was used as a chemical standard. Gallic acid from L. indica inhibited proliferation and induced apoptosis in CML cell lines, as did the chemical standard. Furthermore, gallic acid induced apoptosis and decreased the colony formation of primary CML CD34+ cells. The combination of isolated gallic acid or its chemical standard with BCR::ABL1 tyrosine kinase inhibitors resulted in a significantly greater inhibition of colony formation and cell growth compared to a single drug alone. Mechanistically, CML cells treated with gallic acid exhibited the disruption of multiple oncogenic pathways including ERK/MAPK, FLT3 and JAK/STAT, as well as impaired mitochondrial respiration. Rescue studies showed that gallic acid is significantly less effective in inducing apoptosis in mitochondrial respiration-deficient ρ0 cells compared to wildtype cells, suggesting that the action of gallic acid is largely through the inhibition of mitochondrial respiration. Our findings highlight the therapeutic potential of L. indica in CML and suggest that gallic acid may be a promising lead chemical constituent for further development for CML treatment.
更多
查看译文
关键词
gallic acid,<i>Leea indica</i>,mitochondrial respiration,BCR::ABL1,CML
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要