谷歌浏览器插件
订阅小程序
在清言上使用

Building 3D Crosslinked Graphene-MXene Nanoarchitectures Decorated with MoS2 Quantum Dots Enables Efficient Electrocatalytic Hydrogen Evolution.

Chemistry (Weinheim an der Bergstrasse, Germany)(2024)

引用 0|浏览5
暂无评分
摘要
Although MoS2 quantum dots with abundant edge sites have been regarded as promising eletrode materials for the hydrogen evolution reaction (HER), their electrocatalytic capacity still requires improvements in actual applications. Herein. we demonstrate a controllable and robust bottom-up approach to build 3D crosslinked graphene-Ti3C2Tx MXene frameworks decorated with MoS2 quantum dots (MQD/RGO-MX) via a convenient co-assembly process. The novel structural design gives the MQD/RGO-MX nanoarchitectures a series of superior textural attributes, including 3D interconnected networks, continuous meso- and macropores, well-dispersed quantum dots, ameliorative electronic configuration, and excellent electrical conductivity. Accordingly, the resulting hybrid nanoarchitectures express superior electrocatalytic properties in terms of a low onset potential of only 45 mV, a small Tafel slope of 61 mV dec-1 as well as a long service life towards the HER, which make it quite competitive against bare MoS2 quantum dots, MXene as well as binary MQD/RGO and MQD/MXene electrocatalysts.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要