Chrome Extension
WeChat Mini Program
Use on ChatGLM

A Bioinspired Membrane with Ultrahigh Li+/Na+ and Li+/K+ Separations Enables Direct Lithium Extraction from Brine.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)(2024)

Cited 0|Views6
No score
Abstract
Membranes with precise Li+/Na+ and Li+/K+ separations are imperative for lithium extraction from brine to address the lithium supply shortage. However, achieving this goal remains a daunting challenge due to the similar valence, chemical properties, and subtle atomic-scale distinctions among these monovalent cations. Herein, inspired by the strict size-sieving effect of biological ion channels, a membrane is presented based on nonporous crystalline materials featuring structurally rigid, dimensionally confined, and long-range ordered ion channels that exclusively permeate naked Li+ but block Na+ and K+. This naked-Li+-sieving behavior not only enables unprecedented Li+/Na+ and Li+/K+ selectivities up to 2707.4 and 5109.8, respectively, even surpassing the state-of-the-art membranes by at least two orders of magnitude, but also demonstrates impressive Li+/Mg2+ and Li+/Ca2+ separation capabilities. Moreover, this bioinspired membrane has to be utilized for creating a one-step lithium extraction strategy from natural brines rich in Na+, K+, and Mg2+ without utilizing chemicals or creating solid waste, and it simultaneously produces hydrogen. This research has proposed a new type of ion-sieving membrane and also provides an envisioning of the design paradigm and development of advanced membranes, ion separation, and lithium extraction.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined