Synergistic Active Heterostructure Design for Enhanced Two Electron Oxygen Reduction via Chemical and Electrochemical Reconstruction of Heterosulfides.

Angewandte Chemie (International ed. in English)(2024)

Cited 0|Views0
No score
Abstract
Transition metal sulfides, particularly heterostructures, represent a promising class of electrocatalysts for two electron oxygen reduction (2e- ORR), however, understanding the dynamic structural evolution of these catalysts during alkaline ORR remains relatively unexplored. Herein, NiS2/In2.77S4 heterostructure was synthesized as a precatalyst and through a series of comprehensive ex-situ and in-situ characterizations, including X-ray absorption spectroscopy, Raman spectroscopy, transient photo-induced voltage measurements, electron energy loss spectroscopy, and spherical aberration-corrected electron microscopy, it was revealed that nickel/indium (oxy)hydroxides (NiOOH/In(OH)3) could be evolved from the initial NiS2/In2.77S4 via both electrochemical and chemical-driven methods. The electrochemical-driven phase featured abundant bridging oxygen-deficient [NiO6]-[InO6] units at the interfaces of NiOOH/In(OH)3, facilitating a synergistic effect between active Ni and In sites, thus enabling an enhanced alkaline 2e- ORR capability than that of chemical-driven process. Remarkably, electrochemically induced NiOOH/In(OH)3 exhibited exceptional performance, achieving H2O2 selectivity of >90% across the wide potential window (up to 0.4 V) with a peak selectivity of >99%. Notably, within the flow cell, a current density exceeding 200 mA cm-2 was sustained for over 20 h, together with an impressive Faradaic efficiency of approximately 90% and a hydrogen peroxide production rate surpassing 4 mol g-1 h-1.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined