谷歌浏览器插件
订阅小程序
在清言上使用

Structure, Microheterogeneity, and Transport Properties of Ethaline Decoded by X-ray/Neutron Scattering and MD Simulation.

Keke Chai, Toshio Yamaguchi, Taisen Zuo, Jochi Tseng, Kazutaka Ikeda, Yongquan Zhou

The journal of physical chemistry. B(2024)

引用 0|浏览1
暂无评分
摘要
Ethaline, a deep eutectic solvent (DES) composed of choline chloride (ChCl)-ethylene glycol (EG) in a 1:2 molar ratio, is garnering significant interest for its wide potential applications. The nature of liquid formation and the structure of H-bonds within ethaline were investigated by X-ray scattering (XRS), neutron scattering (NS), and MD simulations. The sum of the dissociation energy barriers of Ch-EG (3.31 kJ·mol-1) and EG-Cl (4.28 kJ·mol-1) exceeds that of Ch-Cl (5.97 kJ·mol-1). This results in a more pronounced solvation of ChCl by EG compared to ChCl association, facilitating the solubilization of ChCl crystals by EG to form a DES. A partial radial distribution function (PDF) reveals that Cl- solvation is dominated by the hydroxyl group of EG, while the methylene group dominates Ch+ solvation. The spatial distribution function (SDF) shows that the distribution of EG and Cl- around Ch+ partially overlaps with that of the quaternary ammonium group. However, the center of mass distance of Ch-Cl (4.95 Å) is significantly lower than that of Ch-EG (5.65 Å), suggesting a favorable advantage for Cl- in this competition. Chain and ring structure distributions provide direct evidence of the microheterogeneity of ethaline. Hydroxyl groups on the EG promote the formation of a chain structure in ethaline, while methylene groups favor a ring structure. H-bond, carbon H-bond, and Cl- bridge bond restrict Cl- diffusion. This new understanding is crucial for a deeper comprehension of the microstructure of ethaline and for elucidating its mechanisms in applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要